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Nonlinearities in econometric and statistical models are
playing an lncreasingly important role; this has not been the
case in the past. This is due to the faét that advanced desk-
top software is becoming easily évailable. It is also a fact
that the statistical techﬁiques used in both estimation and
specification tests are biased towards limearity (Salmon and

¥Wallis (1982)).

"The fact that tﬁe best estimator of a parameter is nonlinear
should no longer be regarded as a deterrent to employing that
estimator" (Harvey 1985). Accordingly, an examination of

nonlinear estimators and their properties is important for

econometricians, policymakers and all those involved in the

difficult task of building structural models.

One of thg hest ways of exploring this avenue of econometric
research is by an anélysis of some of the techniques used to
provide nonlinea; estimates. This paper will examine the var-
ious approaches to nonlinear estimatién. In particular the
Gauss-Newton method is applied to the Bo;—Cox transformation.
This transformation is used to determine the relationship of
explanatory variables (relative prices, incomes aﬁd lagged
nontraded output) to the assumed dependeﬁt variable, ocutput

of nontraded goods in the Barbadian economy. It is demonstrated
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that on the assumption that we have the ideal properties for
the disturbances, the proper choice of fgnctional form for the

explanatory variables is their logarithms.

The linear pseudomodel is ther applied to the model in an
attempt to illustrate the direction that future research could
take when the covariance structure of the disturbance is

under question.

SECTION 1

NONLINEAR ESTIMATION

Estimation in nonlinear models is made difficult whether
one adopts the least squares or maximum likelihood ﬁfinciple
because the first order conditions of the maximizatien or mini-
mization problem usually cannoi be easily solved analytically.
As 2 result least squares or maximum likelihood estimates ha&e

to be provided by iterative numerical techniques.

An iterative technique can be described as feollows:
an initial estimate is obtained and a new estimate which is
hoped to be an improvement on the original is computed by a
given rule. This process is then repeated until convergence
occurs: If the procedure is successful, the final estimate
should satisfy all the properties required of that particular
estimatioﬁ principle. The rules governing the iterative proce-

dure provide the basis of a particular optimization algorithm.



.There is a wide range ofalgorithms available. They dif-
fer in the extent to which they employ partial derivatives.
Apart from this the choice of particular algorithm will depend

to some extent on the type of function to be maximised or mini-

mised.

Judge et al (1980) provide an adequate appraisal of

these algorithms.

In discussing the general problem of nonlinear estimation
it will be assumed that a criterion functiom f{p) is to be
minimiséd with respect to the n.parameteré in the vectorrp.
The n x 1 vector of first partial derivatives will be denoted

by g(p) or simply g, while the n x n matrix of second partial

derivatives the hessian will be written

a?:(p) = G(p)
dp dp” )

where the operator d° refers to the second partial differen-

tiation unless otherwise indicate.

A general recursion relation considered by most algo-

rithms is the following

p* = f + 14 (p)

where p is the current approximation to the minimum, p* is the .

- revised estimate, 1 is a positive scalar known as the step-

length and d(P) is the direction vector.
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Typically the direction vector is the matrix product of

the gradient vector and a positive definite matrix:

d{p) =¢& g (H) .3

where & is a positive definite matrix which leads to an 'accept-

able step' (Fomby, Hill and Johnson (1884)}.

The genéral form of_the recursion relation is
ptr = B+L Eg (D) (4)
Methods involving such iterations are called gradient
methods, sinéelthe direction vector is a function of the
gradient vector g. Some af these gradient methods are presented

helow.

Methods of Steepest Descent

The choice of & &s the idéntity matrix is motivated by
the fact that g points in the direction of the most rapid

decrease of the function £ (.) atp = P

The method of stéepest descent is not without its'problems.
The method may converge to a saddle point rather than a maxi-

mum; if the maximum lies on a narrow ridge then there is a

tendency for successive steps to oscillate back and forth .

across the ridge so that conversnce is slow.

The Method bf Newton

The problems inherent in the method of steépestldescent

led to the consideration of new methods of optimization



),

{Harvey It was soon realized that apﬁroximating the
function by a quadratic expansion could form the basis of
relatively efficient computational.schemes. Such schemes
employ sécond, as well as as first derivatives. The basic
procedure obtained from this approach is known as Newton-

Raphson or simply Newton's Method.

The criterionon objective function expanded about §

(the minimuml} follows
f(p) = £(P) + (p - p) g(B) + 5 {p-p) G(B) (s

Differentiating with respect to p yields.

g(p) = g(p) + {p - B} G(P) (8)
Since -g(B) = 0. thisrimplies that
o -1 .
p=p-G (P g (p) (7)
‘where £ denotes approximately equal to:
o

"P is usually unknown. The solution adopted in Newton-
Raphson is-tp evaluate the Hessian at the current estimate.
p on ph grounds that this will yield an acceptable approxima-—
tion to G(p) ifp is

reasonably close to §. This iterative

scheme becomes:

() 1pig
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-1 A
p* = P -G () g ()
which is sometimes written as:

p* = p-G 8 (9)

where it isunderstood that G and g are evaluated at the current

estimate.

Modifications

The Newton-Raphson scheme will only progress towards a
minimum if G(p) is positive definite. While it 1s true that
the Hessian is always positive it is still possible for f(pt)
to exceed fip). However, this represents a case of 'overshoot-
ing' and such dan occurrence can always be avoided by introduc-

ing a variable step length, L’into the scheme. Hence

p* = P -y G g Ao

A number of technigues have been devised for modifying
the basic Newton-Ralphson method so as to ensure that the

gradient is always premultiplied bya positive definite mairix.

The iterative scheme for such methods can be written as:

~

p* = B -1 H &g (11)
where H = H($) is an n x n positive definite matrix. In the
method of quadratic Mill climbing proposed by Goldfeld, Quandt

and Trotter (1966). H is set equal to

(G + mi)~t ‘ )



The positive scaler m varies as the iterations proceed
its value being chosen as to ensure that H is positive. -When
G is negative definite, this may be guaranteed by setting m to

a4 value greater than the modulus of the largest eigen-value

"of G. When G is singular any positive value of m ensures that

H is positive definite. If m is large, the iteration will be
similar to the method of steepest descent. However, as the
minimum is approached G will tend to become positive definite,

and in this case m may be set eual to zero so that the method

collapses to Newton-Rophson. Although quadratic nill climbing -

is a useful technique in many problems, 'its efficiency is
l1ikely to fall markedly as n increases, since the matrix in-
versions -and eigenvalue evaluations will impose a heavy com-

putational burden.

QUASI-NEWTON

The main advantage of Quasi—Newton.on variable metric
method is that they do not requike the Hessian to be explicitly
evaluated. The iterative scheme is given in equation 11. At
each iteration H is updated in such a way as to yield a series
of positive definite matrices that eventually converge to the
inverse of the Hessian. A common choice for the starting
matrix is the identity matrix. The first iteration is
therefore carried out bythe methods of steepest descent, but
the p#ocedure gradually tends towards Ngwton-Raphson as the

minimum is approached. An example of a Quasi-Newton algorithm
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is the Davidson-Fletcher Powell algorithm (Ammemiya (1983)).

The explicit form of the criterion function has not yet

. been specified. 1In the literature on nonlinear functions,

two criterion have been usually specified. The log-likelihood

function and the sums of squares. -

The solution of the normal equations in the case of
the sum of squared errors as criterion function in general
yield estimations which are net a linear function of the
sample y. This however is a crucial condition used to show

unbiasedness of linear least-squared estimator. Conseguently

the nonlinear least square estimator is neither linear nor

unbiased in general and hence it is not BLUE (best linear un-
biased); in fact,it is difficult to derive its small sample
properties; However, provided that the errors have zero mean
and are indepedently identically distributed with variance sz,
it can be shown that even if-the error distributidn is non
normal the nonlinear least-square estimator of the parameter
vector is consistent and asymptotically normally distr;buted,
(Judge et al 1982). The consistency of.thé least-square
estimator implies that, given a large sample, the estimated
vector is likely to be close to the true parameter. As a
result, the Newton-Raphson procedures will give the same
results (provided the sample is large enough and certain
conditions on the disturbance vector hold) whether the eri-
terion function is the log-likelihood or the sums of squared

’

errors.



GAUSS NEWTON

The Gauss-Newton method adopts the sum of squared errors

as its criterion

The derivation follows:

2
CIf f{p) = slp) =z et
then '
glp) = dslp) = 2 < deg e
ap ap t
while the Hessian is
2
G{p) = d°s (p?
dpdp~
- . 2
-2 clos,-t det + d_et et}
dp dp” dp
using (9) we have
2
o= B [ :: ) det det + d%e .
i dp dp” dpdp”
L

Given that the terms involving the second d

will be small, this results.

- fo-1
p* = B - 5 det det Z‘ det
“-dp ' dp” ]

(13)
(14)
(15)
a1
de )
tf  dp ftf
- ©{18)
erivatives
e
(7
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 SECTION 2

This is the Gauss Newton

1f we write

dp {18)

. this implies that

N /-1 ' 19y
p¥ =D +.(§'Zt Zt) Tz (18)

- * . . ( Y
A slightly different scheme is due to Marquadt (Ammemlya)z? is

(20}

. s -
_p*=p+(= ZtZt+mI)' I oe,

This study employs the Gauss-Newton method. .After con-
verting the Box-Cox problem to a nonlinear least-square prob-
lem the- Gauss-Newton technigque is applied to estimate the

parameters.

The Box-Cox Trausformatio

The Box-Cox transformation (Box-Cox (1964f provides a
method of choosing among a family of competing models not

necessarily'having the same dependent variables.

" The Box-Cox procedure utilizes the following definitions.

(=3
Ibid



The power transformation of the randem variable =z

Z(L)= ZL—‘I,L?{'O
L
nZz , L =20
Z(o) = LnZ as Lim [ (ZL ~ 1)/11]

L— o

by L'HoPital's rule.

In genera]l the model is

(L1) (L21
Yt = B1 +‘B2 th S
" f(xt, B v L(2) )
denote L,y = {Lz ) ........;.Lk;}
and L = {P1, ...... Lk}

The maximum likelihood estimates for B and sz (the variance)

can be solved for cenditional on values for L1, L

(Fomby Hill and Johnson, 1984)

A
B(L) = X

, (B Ry (L,) (L
-y  -x Buy/ \«v - -x

(L1)
where

= LnZ

i

: '
. (L (L1))
Y =y, et I

(21)

P
B(..

(22)

. ’ ~ A V4
(-“J(z)), (L(z))> -1 Wegyr () (g
X X Y

))/T (24)

iot

and’
(L{z))
X =

where i is a TX1 vector of ones and

(Ly)

%2

are each TX1 Qectors of
(L1)
th yeva

The error vector e

properties.

E = {e)

i"'gtk

E(ee/)

(L)
k

observations on
(L)

PR |

respectively.

is assumed to have the -following

- 31

The concéntrated log likelihood junction is then

.Lk/Y,X )
. 2
- 1) £ Loy, - _1 Lns (L)
L=1

(25)



: ‘ i ions of
On the assumption that L, = 1 the Jacobian term falls The approach used here is based on C°“5idera;1° L

L1 = 1 and 2 = 3 L

. s P 4=,..k = L
out of the analysis, and the implication here is that we can gimplicity. It is assumed that : .

: (3) ;
i i i ) d 7’ He says it ma
use non linear least squares. This type of approach is hinted at in Judge y y

not be clear whether there is a relationship between a depen-
This is similar to the approach used by Spitzer (1982).

L L L 0 d Ll t
Spitzer considers models with 2 = 3 =...... k =V an ° of

dent variable y and an independent variable x or the logarithm

x. This uncertainty can be accounted for by using a Box-

be determined by the data. By using a scalipng method due to
Cox transformation of x. The kind of model referred to by

Zarembka (1968) he reduces the estimation problem to one of
Judge follows:
ponlinear least square estimation. The Jacobian term vanishes «

Spitzer assures us that if{l2 13.....:1%} £ zero vector, we ye = By ¥ By ($t -1y e, o (28)

. . . . . . L
can still use this scaling technique with models more compli-

cated than the model he used for expository purposes. This

appears feasible given that the Jacobian term does not involve

the parameters in the design matrix. The estimated parameters SECTION 3

however would need to be transformed back to their original Application

parameters (parameters hefore scaling technique is applied).

The model to be examined for nonlinearities is the non-
Care must be taken when interpreting results. Spitzer :
’ tradable product market. Worrell (1984) describes output
(1984) demonstrates the effect of scaling on hypothesis
in this sector as being affected both by demand and supply;
testing . Scaling can effect the significance or insignifi- .
a problem of simultaneity therefore arises. McClean (1979)
cance of parameter estimates. Spitzer argues that if one
sees this sector however, as having considerable excess capa-
uses the Box-Cox scaling technique to compare two models the
city and hence being demand side determined. The demand side
same scaling factor for the dependent should be used. Merely .
is therefore the short side of the market. This latter
shifting the decimal point of the dependent variable affects
. assumption is adopted here. However, the partial adjustment
hypothesis testing. ' ) . ]
mechanism utilized by Worrell is employed. The model can be

(3)
_Judge, Hill, Griffiths, Liitkempoml,Lee

. ' 102



written as

BQN - f(BYR, BPN/BPT, BQN(-1))

In the original model Worrell included the loan interest
rates. The variables in the relationship were all expressed
on their logarithms. Hié analysis concludes that insensi-
tivity to relative prices limits the scope for expenditure
switching policies. The study by Worrell also concludes

that interest rates had no effect,

This paper is concerned with the validity of alternative
fupctional forms for the data. It questions the validity of

elaims based on incorrect functional specifications.

RESULTS OF ESTIMATION

.TABLE ONE

DPependent Variable BQN

UNTIL 82 - 1

Fr9m 59 - 1
i l | ' 19
obs 24 Deg. of freedomr

H-Squared .9895 R - Squared .0873

Durbin Watson 1.5734

SSR 5600.0861 SEE

Parameters Values T-Statistics
Bl -1233.9300 - 2.4133

B2 19.8410 .8546

B3 or L .3049 1.7619
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B4

B5

NB

where

and

28.8709 .7903
-257.0300 -1.0755
tig (1%) = 2.861 tig (5%) = 2.093
TABLE 2
Linear Pseudo Model
xiy = af(x,, B1, B2, B3, B4) .
B
dB;
Xy = (1,BQN(-1.), BYR_ (BPN/BPT), )

Bi refers to the parameters in Table one

f is the right hand side of 22 with L = L, = L. = L

2 3 k

L1 is set equal to one

BQN{-1} 1is lagged nontradable output sometimes written
BQNL
BYR is real output at time t

BPN The opportunity cost of nontradabile output

/BT in terms of tradable output sometimes written temp.
BPN Price index of nontradable goods
BPT Price index on tradable goods
B is estimated parameter vector from the non

linear least-square estimation.

Y ' i, Bi/ t(x,, B )

-— [l —

t = BQNt + < ki, Bi B Xio B



Dependent variable

Obs 24 Degrees of Freedom 19
R-Squared .9914 -R-squared L9869
SSR 5690.7241 SEE 17.3064
Durbin Watson 1.5502 ‘

Parameters of Yalue T-Statistics
Constant -2011.786 -.35645

%2 21.32403 1.8341

x3 .3675 2,1844

x4 30.5b088 2.0552

X5 -149.2229 7 - .H025

N.B. 1t54 (1 %) = 2.861 and tlQ (5%)

TABLE 3

Y

= 2.093

LBQNL, LBYR, L(BPN/BPT) denote the logarithms of the respect-

ive quantities.

From 59 -1
-obs 24
- R —1squared 9876
S8R . 6612.1161

Durbin Watson

Parameters of
Constant

LBQNL

1.3315

until 82 -1
Degrees of Freedom 20
R - squared L9857

SEE 18.1826

Value T-statistics
-2449.471 - 10.5805
140.8392 2.9429
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LBYR 263.6263 4.4941
LTEMP - YB.2895 -1.9278
Calculated F-Statistic Tabulated
1 ’ ’ 5% Level
F = 11.19740 L=1 -
19 1
. Fie = 4.38
Fie = .e278 L= 0.5 1% Level
1
F19 = 8.18

The above results show that the parameter L is signifi-
cantly different from one at the five percent level. The
hypothesis of equality of the parameter value with 0.5 was
nét rejected at the five percent level. The hypothesis of
equality with zero was not rejected as well. This statistic
is not repcrted here however a brief comparison of the reported
F's (in an asymptotic sense of course) and the statistics
calculated on.the basis of the square of the student ¢ test

using information in Table one corroborates this. For

example:
(.3449 - 132 = 11.c022
0.1975
and
(0.3449)2 3.0497
(0.1975)
and

{(0.3449 - 0.5)2

= .8167
0.1975 .



The F-test reported is more reliable than the t statis-
tice since Hyothesis testing using this particular software
(RATS) is based upon 2 quadratic approximation to the likeli-
hood surface.Curvature information is employed a;d problemé
of under or over estimation of variances hecause of these

first derivative methods are not as harsh.

Table 3 shows the semilog model, Choice of this model
was informed by tpe hypothesis test. The model‘has the
right siéns and relative proceé seem te have more importance.
Moreover, a cox test applied tb the semilog and linear, shoﬁs

that the semilogarithmic form is better.

Rgsults of Cox Test (R.E. Quandt, 1974)

First Test

HT: Y =XBl+ Ul_
vs
H2 Y = ZB2 + U2
X, = (0, BgN (‘1)t’ BYR (BNP/BPT)t

t

z, ={l,LBQN (-1),, LBYR,, L(BPN/BPT)

T, = -4.6340 vV, = 5.8311
d - 1.91
1x = = = -1.91%0 N_ . = 1.96
V%
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Second Test

2 2 2
T, = -2.3485 V, = 5.8774
dy = ~,9687

z

This represents what one may indulge in describing as
almost unqualiiied acceptance of the seﬁilog formal Fisher
and MéAleer (1980). It should be noted that if one adheres
however, to a strict interpretation of the statistical test
of hypothesis, one would not reject the null hypothesis on
the strength of the d1x statistic. On the face of the
following results, some degree of subjective preference is

however reasonable.

TABLE 4

Dependent variable BQN
From 59 -1 Until 82 - 1
Observations 24 Degrees of Freedom 20

R - squared .9834 B ~ squared .9809
SSR 8842.4991 SEE 21.0268

Durbin Watson 1.2129

Parameters ‘ Value T. Statistics
Constant ~-26.72155 -.6165
BOQNL .4394 3.322441



BYR . 4293 4.2348
BPN/BPT 826.7799 .1841
SECTION 4

The literature does not record that substantial an
attempt to model the convariance structure of simple non-

linear models.

One possible scheme is the use of locally equivalent

alternative models. These functional forms are described by
|
1

Godfrey and Wickens (1982).

If we write
Yt s X ’b + a.d LA P 11 +
t 1Yy g"t-G T %¢

we can itest variance convariance structures using an LM
statistic. In order to test for the null hypothesis of
serial independence against that of autoregressive or moving
average disturbance structure -one evaluates the test statis-
tie K2(G) which is G times the F statistic for the joint
significance of By 85 Bgiasec.Bn. This test statistic is
distributed as a chi-square with G degrees of freédom, with
ﬁt being the residuals obtained from tgesmaximum likelihood

estimation of

Xt B + Ut . (27)

This technique is applied to the linear pseudo model
on the assumption that the covariance structure for the dis-
turbance in the linear pseudomodel (Malinvaud 1977) is
no different to that in the actual model. An examination of
héw the linear pseudomodel is calculated implies that this
assumption is not likely to be unreasonable. The linear

pseudo model is already an approximation in itself.

Values of the Test statistic for the first second and
third order statistics under the linear pseudo-model is

GXF (G,D) where D is the number of degrees of free-
dom (T-K) where T is the number of observations and K the

number of data points. F is the calculated F statistic.

(a) 1 x (1.8952) = 1.8952
2 x .8624 = 1.7248
3 x .7572 = 2.2716.

Now the Chi-sguare statistic at the 1% and 5% level with

G degrees of freedom is

DeG of Freedom Tabulated Value of Chi-square
1 F(1,17)=1.8351 5% 5.8415 - 1% 6.6350
2 F(2,15)= .8624 5% 5.99146 1% 9.21034
3.F(3,B) = .7572 5% 7.81473 1%11.3449

The null hypothesis of seriallindependence is accpeted

at the 1 ‘and 5 per cent leveis.



If we write the problem in nonlinear form as in equation
. CONCLUSION

22 then the null hypothesis of serial independence against
that of an autoregressive or moving average disturbance
We set out to show the importance of ihe correct function-

process can be performed again by calculating the lagrange
al forms in the design matrix. We demonstrated this with

multiplier statistic as T times the R-squared of the regres-
the Box-Cox transformation shown.

sion of &, an

t
H é - 4lthough the Cox test does not reject the linear func-
t, -1, .iiiinnn. ' By g
' tional specification, there is some indication.- in thelight
where Ht = df (xt,B,L)‘ . of our serial independence hypothesis - that the semilog is

‘dA 7 : preferable. Standard errors are lower and B-sguares higher
with this model. The descriptive statistics on the whole
where A =1B, L

ive better f ith the semilog.
The evaluated statistic was gLV periormance Wi € o8&

R - squared T o .TRZ - ' Much of the analyses has been couched in asymﬁtotic.
AR(1) .0348 . ?3 8010 results. While there is a better chance of bringing down
AR(2) .0322 ' 22 . .8010 _ the sparrow with a cannon than with a pistol, we don't

AR(30 .05712 21 1.0762 want to spend that long rolling the cannor into place te find

R R . . that the bird is gone. However exact distribution theory
A comparison with the tabulated chi-sguare values shows

- in the context of nonlinear theory does not seem to be ver
that the hypothesis of serial independence is accepted at Y o

raciical at this time.
the one and five percent level, P
Any performance of nonlineal estimators should invalve

stochastic simulation. We should determine whether L =0 is

therefore a better fit than L = 0.5.
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APPENDIX

- PRINCIPAL DATA USED IN STUDY
ANNUAL DATA FROM 59 1 TO 82 1
59- 1 14, 038494 15.06 9897 14.667168  14,575254
63- 1 14. 88666 4 15. 856 491 16. 458004  17.085111
£7- 1 18.054817 18.670730 19.407399 20.713387
61~ 1 21.710302 20.987853 22,284613 22,590883
75- 1 22.211903 21,94914% 22.128790 22,190344
79- 1 22.266473 22, 838236 :
XYy
ANNUAL DATA FROM 59 1 0 g2 1
59- 1 18.395904 18.230999 18. 433833 18. 485659 l
63- 1 19,623283 19.791194 20.798766  21.327607 !
67~ 1 21,949760 22.307665 23.,099782  24.100551
61- 1 23, 870567 25.06382Y 25.299680 25.084073
75- 1 24,8816 86 25.252387 25.640098 26.097046
T9- 1 26.871609 27.36 1633
X5
ANNUAL DATA FROM 59 1 70 82 1
59- 1 -23,340914  -2.334432  -~2.319699 -2.315004
63- 1 ~2.330397 -2.,337629 - -2.299837 -2.308583
67- 1 -2.334637  -2.311159  -2.312469 —é,299931
61- 1 ~-2.269742 ~2.280950 ~2.277670 -2.291423
75- 1 -2,307047 -2.280711 -2.274456  -2.271969
79- 1 -2.295557 -2.326734 —2.328620 2.328588

x3
ANNUAL DATA FROM 59 1 - TO 82 1
59~ 1 -101T4.118720 ~9874.761740  ~9583.410642 ~9495.7 83450
63- 1 -9900.675192 -10115.366362 ~9530.703B28 -9762.861826
67- 1 ° -10366.353651 =9982.114003 -10114.400208  10053.735633
C61- 1 -9612.012781  -9840.9492B0  -98BY4,520508 -10102,214179
75- 1 -10328.45144  -9910.846300 -9854.987766  -9859.282862
79- 1 -10301.481826 -10934.969637 ~10981.533681 -10953.133031
ZBBAR
ANNUAL DATA FROM_ 59 1 om0 & 1
'59- 1 -1537.119000  -&414.640000 -4312,494000  -h4281.390000
63- 1 _14385,.980000 -4437.801000 -%185.398000 -4240.014000
67- 1 —4416.223000 -4256.546000 -U265.026000  ~K186.074000
61- 1 -4012,814000  =4078.544000  -h056.192000  ~4134.962000
75- 1 ~1230,375000 -4073.209000  -4038.443000  -4026.871000
79- 1 ~4159.586000 -#360.612000 -4373.718000  ~4373.49B000
FOFB
ANNUAL DATA FROM 59 1T 82 1
59- 1 180.067228 191. 418585 185.497137  183.963091
63- 1 226.942366 252,891105 284,203246 314, 159977
67— 1 359.,502017 374.577391 412.399359  1463.981648
61— 1 46 9.362255 492.359255 521, 054511 527, h41171
75-. 1 518.094750 517.6 80836 529.96 14978 543.739372
i 79- "1 573.674971  607.180054 611.104170  §01.511651
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ANNUAL DATA FROM 59

-4273,053091
-424Y, 873977
-4157.0556 48

~4519.086228
-14388.622366
~4139,325017
-14029. 976255
-4241,469750

-h315.291137
~4200.001246

~-b4420.558585

1

59-.
63~

~4444. 892105
-4260.323391
-4039. 803255

-424%0,125359

67~
61~

-4139.703171
-4ouy,610372

-4034.346511

~4047.007978

-4073.189836

1

75-

-u362.6o96_51'_.

-4371.922170"

-4171.860971

79-

-4369.292054

"ANNUAL DATA FROM

58 1 TO 82 1

BYR
58- 280 .300000 324, 300000 316.900000 325-800000
62- 328.100000 381 .300000 389 .600000 441900000
66- 471.00000 510.000000 528 .500000 578.100000
70- 645 .000000 $29.200000 714 .000000 731.600000
T4- 715.500000 700.600000 730 -300000 757 .500000
78 793 .200000 856 .200000 897 .T00000 874 .200000
82 836 .700000

ANNUAL DATA FROM 58 1 TO 82 1
BPN
58- 1 . 255000 .320000 . 333000 . 325000
62- 1 . 350000 . 388000 . 343000 377000
66— 1 . 397000 . 364000 . 393000 . 407000
70- 1 . 470000 . 499000 . 536000 648000
74- 1 . 880000 1.600000 1.139000 1.272000
78 1 1.347000 1.347000. 1,437000 1,523000
82— 1 1.543000 '
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